
Performance Analysis of Adaptive Dynamic Load
Balancing in Grid Environment using GRIDSIM

Pawandeep Kaur, Harshpreet Singh

Computer Science & Engineering,
Lovely Professional University Phagwara, Punjab, India

Abstract- Grid computing has emerged as a new and important
field and can be used to increase the performance of Distributed
Computing. Grid computing has large and powerful
applications of self-managing virtual computer out of a large
collection of heterogeneous systems that sharing various
resources which lead to the problem of load imbalance. The
main goal of load balancing is to provide a distributed, low cost,
scheme that balances the load across all the processors. In this
paper an algorithm of load balancing for adaptive dynamic
behaviour during the lifetime of a multistage parallel
computation is proposed to analysing Load Balancing
requirements in a grid environment. The comparison of load
balancing algorithms is done on their qualitative parameters. A
load balancing algorithm has been implemented and tested in a
simulated Grid environment. The application has been
developed using Java and SQL database server. The
algorithm describes multiple aspects of load balancing algorithm
and introduced number of concepts which explains its broad
capabilities. Proposed algorithm is used to solve high demanding
applications and all kinds of problems.It also fulfill the
objectives of the grid environment to achieve high performance
computing by optimal usage of geographically distributed and
heterogeneous resources.

Keywords: Grid Computing, Load Balancing, Adaptive
Computing, Job Migration, Dynamic Scheduling, GridSim.

I INTRODUCTION
 The development in computing resources has enhanced the
performance of computers and reduced their costs. This
availability of low cost powerful computers coupled with the
popularity of the Internet and high-speed networks has led the
computing environment to be mapped from distributed to
Grid environments [1].
 In Grid computing, individual users can access computers
and data, transparently, without having to consider location,
operating system, account administration, and other details.
Grids tend to be more loosely coupled, heterogeneous, and
geographically distributed. In Grid computing details are
abstracted, and the resources are virtualized [2]. Grid
Computing has emerged as a new and important field and can
be visualized as an enhanced form of Distributed Computing.
Sharing in a Grid is not just a simple sharing of files but of
hardware, software, data, and other resources. Thus a
complex yet secure sharing is at the heart of the Grid. The
popularity of the Internet and the availability of powerful
computers and high-speed networks as low-cost commodity
components are changing the way we use computers today.
These technical opportunities have led to the possibility of

using geographically distributed and multi-owner resources to
solve large-scale problems in science, engineering, and
commerce. Recent research on these topics has led to the
emergence of a new paradigm known as Grid computing [2].

II LOAD BALANCING IN GRID ENVIRONMENT
 The load balancing problem is closely related to
scheduling and resource allocation. It is concerned with all
techniques allowing an evenly distribution of the workload
among the available resources in a system. To minimize the
time needed to perform all tasks, the workload has to be
evenly distributed over all nodes which are based on their
processing capabilities. This is why load balancing is needed.
The main objective of a load balancing consists primarily to
optimize the average response time of applications; this often
means the maintenance the workload proportionally
equivalent on the whole system resources. Load balancing is
usually described as either load balancing or load sharing.
Figure 1 shows the Job Migration.

Figure 1: Job Migration [3]

A. Load Balancing Policies
Load balancing algorithms can be defined by their
implementation of the following policies [3]:
 Information policy: specifies what workload information

to be collected, when it is to be collected and from
where.

 Triggering policy: determines the appropriate period to
start a load balancing operation.

 Resource type policy: classifies a resource as server or
receiver of tasks according to its availability status.

 Location policy: uses the results of the resource type
policy to find a suitable partner for a server or receiver.

 Selection policy: defines the tasks that should be
migrated from overloaded resources (source) to most idle
resources (receiver).

Pawandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4473 - 4479

4473

B. Taxonomy of Load Balancing Approaches
 The taxonomy of load balancing approaches is presented
for scheduling and load balancing algorithms in general
purpose distributed computing systems. The organization of
the different load balancing schemes is shown in Figure 2.
1) Local vs. Global: A distinction is drawn between
local and global scheduling at the top level. The local
scheduling discipline determines how the processes resident
on a single CPU is residing and executed. A global
scheduling policy uses information about the system to
allocate processes to multiple processors to optimize a
system-wide performance. Grid scheduling falls into the
global scheduling branch.

Figure 2: Taxonomy of load balancing Approaches

2) Static versus Dynamic: The Static load balancing,
also known as deterministic distribution, assigns a given job
to a fixed resource. Every time the system is restarted, the
same binding task resource is used without considering
changes that may occur during the system lifetime. In this
approach, every task comprising the application is assigned
once to a resource. So, the placement of an application is
static, and a firm estimate of the computation cost can be
made in advance of the actual execution.
The Dynamic load balancing takes into account the fact that
the system parameters may not be known beforehand. That’s
why we don’t use a fixed or static scheme will eventually
produce poor results.A dynamic stratgy gives good results
rather then the static. A dynamic strategy is usually executed
several times and may reassign a previously scheduled task to
a new resource based on the current state of system
environment [4].
The benefits of dynamic over static load balancing are that
the system needs not be aware of the run-time behaviour of
the application before execution. For dynamic strategies, the
main problem is how to characterize the exact workload of a
system, while it changes in a continuous way. Dynamic

strategies can be applied both for homogeneous or
heterogeneous platforms with different degree of
performances.
3) Optimal vs. Suboptimal: All information regarding
the state of resources and the jobs is known, an optimal
assignment could be made based on some criterion function,
such as minimum makespan and maximum resource
utilization. Due to the NP-Complete nature of scheduling
algorithms and the difficulty in Grid scenarios to make
reasonable assumptions which are usually required to prove
the optimality of an algorithm, current research tries to find
suboptimal solutions, which can be further divided into the
following two general categories[5].
1. Approximate and
2. Heuristic.
4) Approximate vs. Heuristic: The approximate
algorithms used in formal computational models, but instead
of searching the entire solution space for an optimal solution,
they are satisfied when a solution that is sufficiently good is
found. In the case where a metric is available for evaluating a
solution, this technique can be used to reduce the time taken
to find an acceptable schedule.
5) Distributed vs. Centralized: The responsibility of
dynamic load balancing is for making global decisions may
lie with one centralized location, or be shared by multiple
distributed locations.
The centralized strategy has the advantage for the
implementation, but suffers from the lack of scalability,
Fault tolerance and the possibility of becoming a performance
bottleneck.
In distributed strategy, the state of resources is distributed
among the nodes that are responsible for managing their own
resources or allocating tasks residing in their queues to other
nodes.
6) Cooperative vs. Non-cooperative: If a distributed
load balancing mode is adopted then the next issue that
should be considered is whether the nodes involved in job
balancing are working independently or cooperatively. In the
noncooperative case, an individual system load balancing acts
as alone as autonomous entities and make the decisions
regarding their own objectives independently of these
decisions effects about the rest of the system.

C. Objective Functions of Load Balancing
 The two major parties of Grid computing, namely resource
consumers who submit various applications and resources
providers who share their resources and different motivations
when they join the Grid. These incentives are presented by
objective functions in scheduling. Grid users are basically
concerned with the applications and their performance, for
instance the total cost to run a particular application, while
resource providers usually pay more attention to the
resource’s performance, for example the resource utilization
in a particular period. Thus objective functions can be
classified into two categories [6]:
1. Application-centric and
2. Resource-centric.

Pawandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4473 - 4479

4474

Figure 3: Objective Functions

1. Application-Centric: Load balancing algorithms
usinging an application-centric objective function aim to
optimize the individual application performance. Application
centric is also known as the application level.

Most of current Grid applications concerns are about time,
such as the make span and economic cost.

2. Resource-Centric: Load balancing algorithms also
using resource-centric objective functions aim to optimize the
resources performance. Resource centric is also known as the
system level. Resource-centric objectives are usually related
to resource utilization and economic profit, for example:

a) Throughput which is the ability of a resource to process a
certain number of jobs in a given period.

b) Utilization, which is the amount of time, a resource is
busy.

D. Types of Load Balancing Algorithms
 Load Balancing Algorithms can be classified in two
different ways:
1. Static Load Balancing Algorithm: The decisions
related to load balance are made at compile time when
resource requirements are estimated. The advantage of
algorithm is the simplicity according to both implementation
and overhead, since there is no need to constantly monitor the
nodes for performance statistics.Static algorithms work
properly only when nodes are having low variation in the
load. Therefore these algorithms are not well suited for the
grid environment, where load is varying at various times [7].

 Figure 4: Static Load Balancing Algorithm

2. Dynamic Load Balancing Algorithm: Dynamic load
balancing algorithms make changes to the distribution of
work among nodes at run-time; they use current or load
information when making distribution decisions [8].
Dynamic load balancing algorithms are advantageous over
static algorithms. But to gain this advantage, we need to
consider the cost to collect and maintain the load information.

Figure 5: Dynamic Load Balancing Algorithm

A DLB algorithm considers following issues:

1. Load estimation policy, which determines how to

estimate the workload of a particular node of the system.
2. Process transfer policy, which determines whether to

execute a process locally or remotely.
3. State information exchange policy, which determines

how to exchange the system load information among the
nodes.

4. Priority assignment policy, which determines the priority
of execution of local and remote processes at a particular
node.

5. Migration limiting policy, which determines the total
number of times a process, can migrate from one node to
another.

III PROPOSED SYSTEM ARCHITECTURE

 We proposed a technique on the basis of load balancing in
Grid environment, which dynamically balances the load. The
rules generated by data mining techniques are used for
migrating jobs for load balancing. Load balancing take place
when some changes occurs in the load state. There are some
particular tasks which change the load configuration in Grid
environment which can be categorized as following:
 Any new job arrived
 Completion of execution of any job
 Any new resource arrived
 Any existing resource withdrawal
 Machine failure at any node
 Node become overloaded

On the basis of above mentioned activities happened we
retrieve the current load information and the initial load

Pawandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4473 - 4479

4475

information from the database. The architecture of load
balancing algorithm is presented in the figure 6.
Initial Status collect the information about all connected
nodes like resource entry and job entry. Computation is done
after the initial status.

Figure 6: System Architecture

1) Following is the proposed algorithm for Adaptive
Dynamic Load Balancing:

1. Initialize the status of all nodes.
2. Initial status=.Previous
3. While jobs=N
 N>0 do
4. if Current state is ready to change then
5. Current = Get change state (); //Computation stage
6. Threshold = generate threshold (upper bound, lower

 bound); //Load Balancing
7. Migrate jobs (Previous,Current); //Partitioning
8. Communication SCM = Total message lengh+

 Processing in each stage;
9. Total runtime of jobs is the sum of the four stages

 (load balancing, computation, communication
and partitioning).

 STotal = SDM + SCM + SCP + SLB
10. Resource consumption of a stages = ∑ Pi Ri

ୀଵ
 Pi = Processors
 Ri = Run time for each processor
11. end if
12. end while
13. END

2) Variables Used: These variables are used in the algorithm
 A job defines number of tasks running on grid.
 Current state indicates change in the state of load in grid.
 Current indicates current load status of all the nodes on

grid.
 Previous indicates load status of all nodes on grid before

the change in the state.
 Threshold indicates maximum limit of handling load for

each node on a grid.

3) Methods used: These methods are used in the algorithm.
 Get change state () to get the current status of load on

each node of grid.
 Migratejobs (Previous, Current) to migratejobs as per

the current and previous status of nodes.
 Generate threshold (Upper bound, Lower bound) to find

out new threshold values of each nodes of grid based on
upper bound and lower bound limit.

Figure 7: Flowchart of Proposed Algorithm

In the algorithm numbers of stages are used. Each stage based
on four steps like data movement step, computation step,
communication step and load balancing step. The first step is
data movement, where data is moved among processors,
according to the entry of a job or a computing resouce.
The load balancing algorithm influences the amount of data
movement and communication. Second step is computation,
where each processor processes an operation on the data. The
associated communication during the computation step is
modeled as the third step. Which includes the time to transfer

Pawandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4473 - 4479

4476

data and send for receive messages. The last step is the load
balancing, which is dynamic load balancing based on the time
patterns. The total time spent on data movement,
communication and load balancing can then be viewed as the
overhead due to parallel processing. We define the threshold
in the upper bound and lower bound. Upper bound means the
load should not exceed more than two and lower bound is
one. The load should not be less than one.

A. Comparative Analysis of Load Balancing
Algorithms
 The comparative study of load balancing algorithms has
been done on the basis of several qualitative parameters.

Table 1: Comparison Analysis of Load Balancing Algorithms

B. Implementation Details and Results
 Load Balancing components have been developed which
executes in simulated grid environment. This application has
been developed using Java and SQLServer 2005 database
server.
1) Grid Computing Environment Simulation Using
GridSim
 How a simulated Grid computing environment is created
using GridSim. First, the Grid users and resources for the
simulated Grid environment have to be created. This can be
done easily using the wizard dialog as shown in Figure 8.

Figure 8: Wizard Dialog to Create Grid Users and Resources

The GridSim user only needs to specify the required number
of users and resources to be created. Random properties can
also be automatically generated for these users and resources.
The GridSim user can then view and modify the properties of
these Grid users and resources by activating their respective
property dialog. To view the status of users click on view user
button and respective dialog box displayed as shown in figure
9.

Figure 9: Wizard Dialog to view Grid Users

To view the status of resources click on view resource button
and respective dialog box displayed as shown in figure 10.

 Figure 10: Wizard Dialog Figure to view Grid Resources

Pawandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4473 - 4479

4477

Figure 11 shows the property dialog of a sample Grid
resource. GridSim creates Grid resources similar to those
present in any other testbed. Resources of different
capabilities and configurations can be simulated, by setting
properties such as cost of using this resource, allocation
policy of resource managers (time/space-shared) and number
of machines in the resource with Processing Elements (PEs)
in each machine and their Million Instructions per Second
(MIPS) rating.

 Figure 11: Resource Dialog to View Grid Resource Properties

Figure 12 shows the property dialog of a sample Grid user.
Users can be created with different requirements (application
and quality of service requirements). These requirements
include the baud rate of the network (connection speed),
maximum time to run the simulation, time delay between
each simulation, and scheduling strategy such as cost and
time optimization for running the application jobs. The
application jobs are modeled as Gridlets.

Figure 12: User Dialog to View Grid User Properties

The parameters of Gridlets that can be defined include
number of Gridlets, job length of Gridlets in Million

Instructions (MI), and length of input and output data in
bytes. GridSim provides a useful feature that supports random
distribution of these parameter values within the specified
derivation range. Each Grid user has its own economic
requirements (deadline and budget) that constrain the running
of application jobs. GridSim supports the flexibility of
defining deadline and budget based on factors or values.If it
is factor-based (between 0.0 and 1.0), a budget factor close to
1.0 signifies the Grid user’s willingness to spend as much
money as required. The Grid user can have the exact cost
amount that it is willing to spend for the value-based option.
GridSim will automatically generate Java code for running
the Grid simulation .This file can then be compiled and run
with the GridSim toolkit packages to simulate the required
Grid computing environment.

2) Java Monitoring & Management Console
 Java Monitoring & Management Console used to develop
the memory usage, CPU load, classes and live threads in
graphical foam.

Figure 13: Memory Usage

Figure 13 shows the Memory Usage Page. This page shows
the used memory.

Figure 14: Number of Threads

Figure 14 shows the Number of Threads Page. This page
shows the peak load and lives threads.

Pawandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4473 - 4479

4478

Figure 15: Number of Loaded Classes

Figure 15 shows the Number of Loaded Classes Page. This
page shows the total classes and loaded classes.

Figure 16: Overview of all Classes

Figure 16 shows the Overview of Classes Page. This page
shows the summary of heap memory usage, threads, classes
and CPU load. Heap memory usage shows the used,
commited and maxmium size of memory. Threads show the
graph of live threads. Class’s shows the number of loaded
classes.

IV CONCLUSION
 This work focuses on design and implementations of
Adaptive dynamic load balancing system for Grid computing
environment. Proposed algorithm can use initial load
information stored in the database at the initial level and
current load information after load imbalance are first
recorded. Grid application performance becomes a challenge
in dynamic grid environment. Resources can be submitted to
Grid and can be withdrawn from Grid at any time. These
features of Grid make Load Balancing one of the critical
features of Grid infrastructure. There are a number of factors,
which can affect the grid application performance like load
balancing, heterogeneity of resources and resource sharing in
the Grid environment. The dynamic scheduling strategy of
varying the number of processors during the lifetime of a
parallel multistage computation can significantly affect the

total parallel runtime and total resource consumption. In
adaptive computing the problem size varies during
simulation. Varying the number of processors at runtime can
be beneficial to low-power high-performance parallel system
designs. Load Balancing is one of most important features of
Grid Middleware for efficient execution of compute intensive
applications. The efficiency of Load Balancing Module
overall decides the efficiency of Grid Middleware.Proposed
algorithm is executed in simulated Grid environment.

ACKNOWLEDGMENT

 This research work was supported by Lovely Professional
University Phagwara, India (LPU). The author is grateful to
Asst. Prof. Harshpreet Singh for his discussions, advices and
editing.

REFERENCES

[1] Pawandeep Kaur, Harshpreet Singh “Dynamic Load Balancing in Grid
Environment using Adaptive computing”, International Conference on
Recent Trends of Computer Technology in Academia (ICRTCTA-
2012), April 2012.

[2] R. Buyya and J. Giddy and H. Stockinger, Economic Models for Resource
Management and Scheduling in Grid Computing, in J. of Concurrency
and Computation: Practice and Experience, Volume 14, Issue (13-15),
Pages (1507-1542), Wiley Press, Dec. 2002.

[3] Ratnesh Kumar Nath, ”Efficient Load Balancing Algorithm in Grid
Environment”, Thapar University, Patiala, May 2007.

[4] Belabbas Yagoubi and Yahya Slimani, ”Dynamic Load Balancing
Strategy for Grid Computing”, World Academy of Science,
Engineering and Technology 19, 2006.

[5] T.G. Casavant and J.L. Khul.‘Taxonomy of scheduling in general purpose
distributed computing systems’.IEEE Transactions on Soft.
Engineering, 14(2):pp.140-155, 1995.

[6] Y. Zhu, A Survey on Grid Scheduling Systems, Department of Computer
Science, Hong Kong University of sci. and Tech., 2003.

[7] Javier Bustos Jimenez, ”Robin Hood: An Active Objects Load Balancing
Mechanism for Intranet”, Departamento de Ciencias de la
Computacion, jbustos@dcc.uchile.cl, Universidad de Chile.

[8] S. Iqbal, Load balancing strategies for parallel architectures, Ph.D.
Thesis, Univeristy of Texas at Austin, May 2003.

Pawandeep Kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4473 - 4479

4479

